

Lee-Lueng Fu

Jet Propulsion Laboratory

California Institute of Technology

Raffaele Ferrari

Massachusetts Institute of Technology

The ocean's kinetic energy resides in scales not well resolved by a nadir-looking altimeter

ground tracks of Jason (thick) and T/P (thin) Tandem Mission

100 km scale eddies

100 km

Ocean current speed at 15 m depth from 1/16th ECCO2 integration

The importance of oceanic submesoscales:

About 50% of the vertical motion in the world's oceans responsible for heat and CO₂ uptake takes place at the submesoscales

Estimating the vertical velocity of the upper ocean from SSH measurement

Reconstructed W from SSH

Contours are relative vorticity

The oceanic submesoscales have not been well observed

High-resolution wide-swath altimetry

Surface Water and Ocean Topography Mission (SWOT)

- 10 m mast
- Ka Band (35 GHz)
- 3.5 deg look angle
- 120 km swath
- 22-day global coverage
- 2 obs/22days at the equator
- > 3 obs/22days at latitudes > 50 deg
- > 6 obs/22days at latitudes > 65 deg

Anticipated SWOT Performance

200

-0.5

SWOT

R. Leben/U. Colorado

-100

1.5

Summary

- SAR interferometry offers a promising approach to mapping the global ocean eddy variability down to 10 km scale.
- Oceanic submesoscales are important for the kinetic energy of ocean circulation as well as the vertical transfer of heat, nutrients, and carbon to the deep ocean.
- The SWOT Mission is under development for addressing both oceanographic and hydrologic objectives.

Please come to the Town Hall meeting tonight at 6:15 pm, Moscone West, Room 2018 for more information on SWOT.